SupIRBuck ${ }^{\text {m }}$

USER GUIDE FOR IRDC3475 EVALUATION BOARD

DESCRIPTION

The IR3475 SupIRBuck ${ }^{\text {TM }}$ is an easy-to-use, fully integrated and highly efficient DC/DC voltage regulator. The onboard constant on time hysteretic controller and MOSFETs make IR3475 a space-efficient solution that delivers up to 10A of precisely controlled output voltage. IR3475 is housed in a 4 mmx 5 mm QFN package.

Key features offered by IR3475 include: programmable switching frequency, soft start, temperature compensated over current protection, and thermal shutdown allowing a very flexible solution suitable for many different applications and an ideal choice for battery powered applications.

Additional features include pre-bias startup, a very precise 0.5 V reference, forced continuous conduction mode option, over/under voltage protection, power good output, and enable input with voltage monitoring capability.

This user guide contains the schematic, bill of materials, and operating instructions of the IRDC3475 evaluation board. Detailed product specifications, application information and performance curves at different operating conditions are available in the IR3475 data sheet.

BOARD FEATURES

- $\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$
- $\mathrm{V}_{\text {OUT }}=+1.05 \mathrm{~V}$
- $\mathrm{I}_{\text {OUt }}=0$ to 10A
- $\mathrm{F}_{\mathrm{s}}=300 \mathrm{kHz}$ @ CCM
- $\mathrm{L}=1.5 \mu \mathrm{H}$
- $\mathrm{C}_{\mathrm{IN}}=22 \mu \mathrm{~F}$ (ceramic 1210) $+68 \mu \mathrm{~F}$ (electrolytic)
- $\mathrm{C}_{\text {OUT }}=47 \mu \mathrm{~F}$ (ceramic 0805) $+330 \mu \mathrm{~F}$ (POSCAP)

CONNECTIONS and OPERATING INSTRUCTIONS

An input supply in the range of 8 to 19 V should be connected from VIN to PGND. A maximum load of 10A may be connected to $\mathrm{V}_{\text {OUT }}$ and PGND. The connection diagram is shown in Fig. 1, and the inputs and outputs of the board are listed in Table 1.

IRDC3475 has two input supplies, one for biasing (VCC) and the other for input voltage (VIN). Separate supplies should be applied to these inputs. VCC input should be a well regulated 4.5 V to 5.5 V supply connected to VCC and PGND. Enable (EN) is controlled by the first switch of SW1, and FCCM option can be selected by the second switch of SW1. Toggle the switch to the ON position (marked by a solid square) to enable switching or to select FCCM. The absolute maximum voltage of the external signal applied to EN (TP4) and FCCM is +8 V .

Table 1. Connections

Connection	
	Signal Name
VIN (TP2)	VIN
PGND (TP5)	Ground for VIN
VCC (TP16)	VCC Input
PGND (TP17)	Ground for VCC Input
VOUT (TP7)	$\mathrm{V}_{\text {OUT }}(+1.05 \mathrm{~V})$
PGND (TP10)	Ground for $\mathrm{V}_{\text {OUT }}$
EN (TP4)	Enable Input

LAYOUT

The PCB is a 4-layer board. All layers are 1 oz. copper. IR3475 and other components are mounted on the top and bottom layers of the board.

The power supply decoupling capacitors, bootstrap capacitor and feedback components are located close to IR3475. To improve efficiency, the circuit board is designed to minimize the length of the onboard power ground current path.

International IORRectifier

Fig. 1: Connection Diagram of IRDC3475 Evaluation Board

PCB Board Layout

Fig. 2: Board Layout, Top Components

Fig. 3: Board Layout, Bottom Components

International IORRectifier

PCB Board Layout

Fig. 4: Board Layout, Top Layer

Fig. 5: Board Layout, Bottom Layer

International IORRectifier

PCB Board Layout

Fig. 6: Board Layout, Mid-layer I

Fig. 7: Board Layout, Mid-layer II

International IORRectifier

IRDC3475

Fig. 8: Schematic of the IRDC3475 Evaluation Board

Bill of Materials

QTY	REF DESIGNATOR	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
3	C1, C21, C25	1.00uF	capacitor, X7R, 1.00uF, 25V, 0.1, 0603	Murata	GRM188R71E105KA12D
1	C10	47uF	capacitor, 47uF, $6.3 \mathrm{~V}, 805$	TDK	C2012X5R0J476M
2	C12, C20	0.100uF	capacitor, X7R, 0.100uF, 25V, 0.1, 603	TDK	C1608X7R1E104K
1	C2	22.0uF	capacitor, X5R, 22.0uF, 16V, 20\%, 1206	Taiyo Yuden	EMK316BJ226ML-T
1	C3	68uF	capacitor, electrolytic, $68 \mathrm{uF}, 25 \mathrm{~V}, 0.2$, SMD	Panasonic	EEV-FK1E680P
1	C4	0.22uF	capacitor, X5R, 0.22uF, 10V, 0.1, 0603	TDK	C1608X5R1A224K
1	C9	330uF	capacitor, electrolytic, 330uF, 2.5V, 0.2, 7343	Sanyo	2R5TPE330M9
1	L1	1.5uH	inductor, ferrite, 1.5uH, 16.0A, 3.8mOhm, SMT	Cyntec	PIMB104T-1R5MS-39
3	R1, R2, R5	10.0K	resistor, thick film, 10.0K, 1/10W, 0.01, 0603	KOA	RK73H1J1002F
1	R11	20	resistor, thick film, 20, 1/10W, 0.01, 603	KOA	RK73H1JLTD20R0F
1	R12	4.99	resistor, thick film, 4.99, 1/10W, 0.01, 603	Vishay/Dale	CRCW06034R99FNEA
1	R3	200K	resistor, thick film, 200K, 1/10W, 0.01, 603	KOA	RK73H1JLTD2003F
1	R4	13.7K	resistor, thick film, 13.7K, 1/10W, 0.01, 603	KOA	RK73H1JLTD1372F
1	R7	2.80 K	resistor, thick film, 2.80K, 1/10W, 0.01, 603	KOA	RK73H1JLTD2801F
1	R8	2.55 K	resistor, thick film, $2.55 \mathrm{~K}, 1 / 10 \mathrm{~W}, 0.01,0603$	KOA	RK73H1J2551F
1	SW1	SPST	switch, DIP, SPST, 2 position, SMT	C\&K Components	SD02H0SK
1	U1	IR3475	$4 \mathrm{~mm} \mathrm{X} \mathrm{5mm} \mathrm{QFN}$	IRF	IR3475MTRPBF

International IORRectifier

TYPICAL OPERATING WAVEFORMS

Tested with demoboard shown in Fig. 8, VIN $=12 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}$, VOUT $=1.05 \mathrm{~V}$, $\mathrm{Fs}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no airflow, unless otherwise specified

Fig. 9: Startup

Fig. 11: $\operatorname{DCM}\left(I_{\text {OUT }}=0.1 \mathrm{~A}\right)$

Fig. 13: Over Current Protection (tested by shorting VOUT to PGND)

Fig. 10: Shutdown

Fig. 12: $C C M\left(I_{\text {OUT }}=10 A\right)$

Fig. 14: Over Voltage Protection (tested by shorting FB to VOUT)

International IORRectifier

TYPICAL OPERATING WAVEFORMS

Tested with demoboard shown in Fig. 8, VIN $=12 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}$, VOUT $=1.05 \mathrm{~V}$, $\mathrm{Fs}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no airflow, unless otherwise specified

Fig. 15: Load Transient 0-4A

Fig. 16: Load Transient 6-10A

TYPICAL PERFORMANCE

$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VOUT}=1.05 \mathrm{~V}, \mathrm{Fs}=300 \mathrm{kHz}, \mathrm{IOUT}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no airflow

Fig. 17: Thermal Image (IR3475: $95^{\circ} \mathrm{C}$, Inductor: $57^{\circ} \mathrm{C}, \mathrm{PCB}: 44^{\circ} \mathrm{C}$)

International IORRectifier

TYPICAL OPERATING DATA

$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VOUT}=1.05 \mathrm{~V}$, $\mathrm{Fs}=300 \mathrm{kHz}$, $\mathrm{IOUT}=0 \sim 10 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no airflow, unless otherwise specified

Fig. 18: Efficiency vs. Output Current

Fig. 20: Load Regulation

Fig. 19: Switching Frequency vs. Output Current

Fig. 21: Line Regulation at 10A Load

PCB Metal and Components Placement

Lead lands (the 13 IC pins) width should be equal to nominal part lead width. The minimum lead to lead spacing should be $\geq 0.2 \mathrm{~mm}$ to minimize shorting.
Lead land length should be equal to maximum part lead length +0.3 mm outboard extension. The outboard extension ensures a large toe fillet that can be easily inspected.
Pad lands (the 4 big pads) length and width should be equal to maximum part pad length and width. However, the minimum metal to metal spacing should be no less than 0.17 mm for 2 oz . Copper, or no less than 0.1 mm for 1 oz . Copper, or no less than 0.23 mm for 3 oz . Copper.

All Dimensions in mm
\square PCB Copper
\square Component
\square Soldermask

International IORRectifier

Solder Resist

It is recommended that the lead lands are Non Solder Mask Defined (NSMD). The solder resist should be pulled away from the metal lead lands by a minimum of 0.025 mm to ensure NSMD pads.

The land pad should be Solder Mask Defined (SMD), with a minimum overlap of the solder resist onto the copper of 0.05 mm to accommodate solder resist misalignment.

Ensure that the solder resist in between the lead lands and the pad land is $\geq 0.15 \mathrm{~mm}$ due to the high aspect ratio of the solder resist strip separating the lead lands from the pad land.

International IORRectifier

Stencil Design

The Stencil apertures for the lead lands should be approximately 80% of the area of the lead lads. Reducing the amount of solder deposited will minimize the occurrences of lead shorts. If too much solder is deposited on the center pad, the part will float and the lead lands will open.

The maximum length and width of the land pad stencil aperture should be equal to the solder resist opening minus an annular 0.2 mm pull back in order to decrease the risk of shorting the center land to the lead lands when the part is pushed into the solder paste.

Stencil Aperture
All Dimensions in mm

International IORRectifier

IRDC3475

SIDE VIEW

	0.15	C

\square
TOP VIEW

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information Data and specifications subject to change without notice. 02/2011

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by International Rectifier manufacturer:
Other Similar products are found below :
EVAL6482H-DISC EVAL-AD5522EBUZ EVAL-ADM1060EBZ EVAL-ADM1073MEBZ EVAL-ADM1166TQEBZ EVALADM1168LQEBZ EVAL-ADM1171EBZ EVAL-ADM1276EBZ EVB-EN5319QI EVB-EN5365QI EVB-EN6347QI EVB-EP5348UI MIC23158YML EV MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E ADM00513 ADM8611-EVALZ ADM8612EVALZ ADM8613-EVALZ ADM8615-EVALZ ADP1046ADC1-EVALZ ADP1055-EVALZ ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP160UJZ-REDYKIT ADP166UJ-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1754-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1876-EVALZ ADP1879-1.0-EVALZ ADP1882-1.0-EVALZ ADP1883-0.6-EVALZ ADP197CB-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.2-EVALZ

